Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.285
Filtrar
1.
Int J Pharm ; 654: 123984, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461874

RESUMO

Both latent and multidrug-resistant tuberculosis (TB) have been causing significant concern worldwide. A novel drug, pretomanid (PA-824), has shown a potent bactericidal effect against both active and latent forms of Mycobacterium tuberculosis (MTb) and a synergistic effect when combined with pyrazinamide and moxifloxacin. This study aimed to develop triple combination spray dried inhalable formulations composed of antitubercular drugs, pretomanid, moxifloxacin, and pyrazinamide (1:2:8 w/w/w), alone (PaMP) and in combination with an aerosolization enhancer, L-leucine (20 % w/w, PaMPL). The formulation PaMPL consisted of hollow, spherical, dimpled particles (<5 µm) and showed good aerosolization behaviour with a fine particle fraction of 70 %. Solid-state characterization of formulations with and without L-leucine confirmed the amorphous nature of moxifloxacin and pretomanid and the crystalline nature of pyrazinamide with polymorphic transformation after the spray drying process. Further, the X-ray photoelectron spectroscopic analysis revealed the predominant surface composition of L-leucine on PaMPL dry powder particles. The dose-response cytotoxicity results showed pyrazinamide and moxifloxacin were non-toxic in both A549 and Calu-3 cell lines up to 150 µg/mL. However, the cell viability gradually decreased to 50 % when the pretomanid concentration increased to 150 µg/mL. The in vitro efficacy studies demonstrated that the triple combination formulation had more prominent antibacterial activity with a minimum inhibitory concentration (MIC) of 1 µg/mL against the MTb H37Rv strain as compared to individual drugs. In conclusion, the triple combination of pretomanid, moxifloxacin, and pyrazinamide as an inhalable dry powder formulation will potentially improve treatment efficacy with fewer systemic side effects in patients suffering from latent and multidrug-resistant TB.


Assuntos
Nitroimidazóis , Pirazinamida , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Pirazinamida/farmacologia , Pirazinamida/química , Moxifloxacina/farmacologia , Moxifloxacina/química , Pós/química , Leucina/química , Aerossóis/química , Antituberculosos/farmacologia , Antituberculosos/química , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Administração por Inalação , Inaladores de Pó Seco/métodos , Tamanho da Partícula
2.
Chembiochem ; 25(6): e202300762, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294275

RESUMO

Precise information regarding the interaction between proteins and ligands at molecular resolution is crucial for effectively guiding the optimization process from initial hits to lead compounds in early stages of drug development. In this study, we introduce a novel aliphatic side chain isotope-labeling scheme to directly probe interactions between ligands and aliphatic sidechains using NMR techniques. To demonstrate the applicability of this method, we selected a set of Brd4-BD1 binders and analyzed 1 H chemical shift perturbation resulting from CH-π interaction of Hß -Val and Hγ -Leu as CH donors with corresponding ligand aromatic moieties as π acceptors.


Assuntos
Proteínas Nucleares , Valina , Leucina/química , Valina/química , Ligantes , Fatores de Transcrição
3.
J Mol Biol ; 436(4): 168444, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218366

RESUMO

Many examples are known of regions of intrinsically disordered proteins that fold into α-helices upon binding to their targets. These helical binding motifs (HBMs) can be partially helical also in the unbound state, and this so-called residual structure can affect binding affinity and kinetics. To investigate the underlying mechanisms governing the formation of residual helical structure, we assembled a dataset of experimental helix contents of 65 peptides containing HBM that fold-upon-binding. The average residual helicity is 17% and increases to 60% upon target binding. The helix contents of residual and target-bound structures do not correlate, however the relative location of helix elements in both states shows a strong overlap. Compared to the general disordered regions, HBMs are enriched in amino acids with high helix preference and these residues are typically involved in target binding, explaining the overlap in helix positions. In particular, we find that leucine residues and leucine motifs in HBMs are the major contributors to helix stabilization and target-binding. For the two model peptides, we show that substitution of leucine motifs to other hydrophobic residues (valine or isoleucine) leads to reduction of residual helicity, supporting the role of leucine as helix stabilizer. From the three hydrophobic residues only leucine can efficiently stabilize residual helical structure. We suggest that the high occurrence of leucine motifs and a general preference for leucine at binding interfaces in HBMs can be explained by its unique ability to stabilize helical elements.


Assuntos
Proteínas Intrinsicamente Desordenadas , Leucina , Proteínas Intrinsicamente Desordenadas/química , Leucina/química , Peptídeos/química , Estrutura Secundária de Proteína , Motivos de Aminoácidos , Conjuntos de Dados como Assunto , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Modelos Químicos
4.
J Biomol Struct Dyn ; 42(2): 747-758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36995308

RESUMO

Aminoacyl-tRNA synthetases are crucial enzymes involved in protein synthesis and various cellular physiological reactions. Aside from their standard role in linking amino acids to the corresponding tRNAs, they also impact protein homeostasis by controlling the level of soluble amino acids within the cell. For instance, leucyl-tRNA synthetase (LARS1) acts as a leucine sensor for the mammalian target of rapamycin complex 1 (mTORC1), and may also function as a probable GTPase-activating protein (GAP) for the RagD subunit of the heteromeric activator of mTORC1. In turn, mTORC1 regulates cellular processes, such as protein synthesis, autophagy, and cell growth, and is implicated in various human diseases including cancer, obesity, diabetes, and neurodegeneration. Hence, inhibitors of mTORC1 or a deregulated mTORC1 pathway may offer potential cancer therapies. In this study, we investigated the structural requirements for preventing the sensing and signal transmission from LARS to mTORC1. Building upon recent studies on mTORC1 regulation activation by leucine, we lay the foundation for the development of chemotherapeutic agents against mTORC1 that can overcome resistance to rapamycin. Using a combination of in-silico approaches to develop and validate an alternative interaction model, discussing its benefits and advancements. Finally, we identified a set of compounds ready for testing to prevent LARS1/RagD protein-protein interactions. We establish a basis for creating chemotherapeutic drugs targeting mTORC1, which can conquer resistance to rapamycin. We utilize in-silico methods to generate and confirm an alternative interaction model, outlining its advantages and improvements, and pinpoint a group of novel substances that can prevent LARS1/RagD interactions.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Leucina/química , Leucina/metabolismo , Leucina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Aminoácidos/metabolismo , Sirolimo , Neoplasias/metabolismo
5.
Proteins ; 92(1): 15-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37497770

RESUMO

Leucine and Isoleucine are two amino acids that differ only by the positioning of one methyl group. This small difference can have important consequences in α-helices, as the ß-branching of Ile results in helix destabilization. We set out to investigate whether there are general trends for the occurrences of Leu and Ile residues in the structures and sequences of class A GPCRs (G protein-coupled receptors). GPCRs are integral membrane proteins in which α-helices span the plasma membrane seven times and which play a crucial role in signal transmission. We found that Leu side chains are generally more exposed at the protein surface than Ile side chains. We explored whether this difference might be attributed to different functions of the two amino acids and tested if Leu tunes the hydrophobicity of the transmembrane domain based on the Wimley-White whole-residue hydrophobicity scales. Leu content decreases the variation in hydropathy between receptors and correlates with the non-Leu receptor hydropathy. Both measures indicate that hydropathy is tuned by Leu. To test this idea further, we generated protein sequences with random amino acid compositions using a simple numerical model, in which hydropathy was tuned by adjusting the number of Leu residues. The model was able to replicate the observations made with class A GPCR sequences. We speculate that the hydropathy of transmembrane domains of class A GPCRs is tuned by Leu (and to some lesser degree by Lys and Val) to facilitate correct insertion into membranes and/or to stably anchor the receptors within membranes.


Assuntos
Isoleucina , Proteínas de Membrana , Leucina/química , Isoleucina/química , Sequência de Aminoácidos , Proteínas de Membrana/química , Aminoácidos , Proteínas de Transporte/metabolismo
6.
Org Biomol Chem ; 21(46): 9216-9229, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964666

RESUMO

Isotopic labeling of methyl-substituted proteinogenic amino acids with 13C has transformed applications of solution-based NMR spectroscopy and allowed the study of much larger and more complex proteins than previously possible with 15N labeling. Procedures are well-established for producing methyl-labeled proteins expressed in bacteria, with efficient incorporation of 13C-methyl labeled metabolic precursors to enable the isotopic labeling of Ile, Val, and Leu methyl groups. Recently, similar methodology has been applied to enable 13C-methyl labeling of Ile, Val, and Leu in yeast, extending the approach to proteins that do not readily fold when produced in bacteria. Mammalian or insect cells are nonetheless preferable for production of many human proteins, yet 13C-methyl labeling using similar metabolic precursors is not feasible as these cells lack the requisite biosynthetic machinery. Herein, we report versatile and high-yielding synthetic routes to 13C methyl-labeled amino acids based on palladium-catalyzed C(sp3)-H functionalization. We demonstrate the efficient incorporation of two of the synthesized amino acids, 13C-γ2-Ile and 13C-γ1,γ2-Val, into human receptor extracellular domains with multiple disulfides using suspension-cultured HEK293 cells. Production costs are reasonable, even at moderate expression levels of 2-3 mg purified protein per liter of medium, and the method can be extended to label other methyl groups, such as 13C-δ1-Ile and 13C-δ1,δ2-Leu. In summary, we demonstrate the cost-effective production of methyl-labeled proteins in mammalian cells by incorporation of 13C methyl-labeled amino acids generated de novo by a versatile synthetic route.


Assuntos
Aminoácidos , Valina , Animais , Humanos , Leucina/química , Valina/química , Células HEK293 , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Mamíferos/metabolismo
7.
Mol Pharm ; 20(12): 6368-6379, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37942959

RESUMO

Co-amorphous systems are amorphous formulations stabilized by the miscible dispersion of small molecules. This study aimed to design a stable co-amorphous system for the co-delivery of two drugs to the lungs as an inhaled formulation. Theophylline (THE) and levofloxacin (LEV) were used as model drugs for treating lung infection with inflammation. Leucine (LEU) or tryptophan (TRP) was employed as the third component to improve the inhalation properties. The co-amorphous system containing THE and LEV in an equal molar ratio was successfully prepared via spray drying where reduction of the particle size and change to the spherical morphology were observed. The addition of LEU or TRP at a one-tenth molar ratio to THE-LEV did not affect the formation of the co-amorphous system, but only TRP acted as an antiplasticizer. The Fourier transform infrared spectroscopy spectra revealed intermolecular interactions between THE and LEV in the co-amorphous system that were retained after the addition of LEU or TRP. The co-amorphous THE-LEV system exhibited better in vitro aerodynamic performance than a physical mixture of these compounds and permitted the simultaneous delivery of both drugs in various stages. The co-amorphous THE-LEV system crystallized at 40 °C, and this crystallization was not prevented by LEU. However, THE-LEV-TRP maintained its amorphous state for 1 month. Thus, TRP can act as a third component to improve the physical stability of the co-amorphous THE-LEV system, while maintaining the enhanced aerodynamic properties.


Assuntos
Aminoácidos , Teofilina , Aminoácidos/química , Levofloxacino , Administração por Inalação , Leucina/química , Preparações Farmacêuticas , Estabilidade de Medicamentos , Solubilidade , Varredura Diferencial de Calorimetria
8.
Anal Chem ; 95(50): 18504-18513, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38033201

RESUMO

Amino acids (AAs) in the d-form are involved in multiple pivotal neurological processes, although their l-enantiomers are most commonly found. Mass spectrometry-based analysis of low-abundance d-AAs has been hindered by challenging enantiomeric separation from l-AAs, low sensitivity for detection, and lack of suitable internal standards for accurate quantification. To address these critical gaps, N,N-dimethyl-l-leucine (l-DiLeu) tags are first validated as novel chiral derivatization reagents for chromatographic separation of 20 pairs of d/l-AAs, allowing the construction of a 4-plex isobaric labeling strategy for enantiomer-resolved quantification through single step tagging. Additionally, the creative design of N,N-dimethyl-d-leucine (d-DiLeu) reagents offers an alternative approach to generate analytically equivalent internal references of d-AAs using d-DiLeu-labeled l-AAs. By labeling cost-effective l-AA standards using paired d- and l-DiLeu, this approach not only enables absolute quantitation of both d-AAs and l-AAs from complex biological matrices with enhanced precision but also significantly boosts the combined signal intensities from all isobaric channels, greatly improving the detection and quantitation of low-abundance AAs, particularly d-AAs. We term this quantitative strategy CHRISTMAS, which stands for chiral pair isobaric labeling strategy for multiplexed absolute quantitation. Leveraging the ion mobility collision cross section (CCS) alignment, interferences from coeluting isomers/isobars are effectively filtered out to provide improved quantitative accuracy. From wild-type and Alzheimer's disease (AD) mouse brains, we successfully quantified 20 l-AAs and 5 d-AAs. The significant presence and differential trends of certain d-AAs compared to those of their l-counterparts provide valuable insights into the involvement of d-AAs in aging, AD progression, and neurodegeneration.


Assuntos
Aminoácidos , Proteômica , Animais , Camundongos , Aminoácidos/análise , Proteômica/métodos , Leucina/química , Aminas , Cromatografia Líquida/métodos
9.
Mol Pharm ; 20(11): 5682-5689, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37782000

RESUMO

Protein-based drugs are becoming increasingly important, but there are challenges associated with their formulation (for example, formulating stable inhalable aerosols while maintaining the proper long-term stability of the protein). Determining the morphology of multicomponent, protein-based drug formulations is particularly challenging. Here, we use dynamic nuclear polarization (DNP) solid-state NMR spectroscopy to determine the hierarchy of components within spray-dried particles containing protein, trehalose, leucine, and trileucine. DNP NMR was applied to these formulations to assess the localization of the components within the particles. We found a consistent scheme, where trehalose and the protein are co-located within the same phase in the core of the particles and leucine and trileucine are distributed in separate phases at the surface of the particles. The description of the hierarchy of the organic components determined by DNP NMR enables the rationalization of the performance of the formulation.


Assuntos
Excipientes , Trealose , Leucina/química , Trealose/química , Excipientes/química , Aerossóis/química , Espectroscopia de Ressonância Magnética , Pós/química , Administração por Inalação , Tamanho da Partícula
10.
J Mol Biol ; 435(22): 168281, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734431

RESUMO

Amyloid aggregation is a key process in amyloidoses and neurodegenerative diseases. Hydrophobicity is one of the major driving forces for this type of aggregation, as an increase in hydrophobicity generally correlates with aggregation susceptibility and rate. However, most experimental systems in vitro and prediction tools in silico neglect the contribution of protective osmolytes present in the cellular environment. Here, we assessed the role of hydrophobic mutations in amyloid aggregation in the presence of osmolytes. To achieve this goal, we used the model protein human muscle acylphosphatase (mAcP) and mutations to leucine that increased its hydrophobicity without affecting its thermodynamic stability. Osmolytes significantly slowed down the aggregation kinetics of the hydrophobic mutants, with an effect larger than that observed on the wild-type protein. The effect increased as the mutation site was closer to the middle of the protein sequence. We propose that the preferential exclusion of osmolytes from mutation-introduced hydrophobic side-chains quenches the aggregation potential of the ensemble of partially unfolded states of the protein by inducing its compaction and inhibiting its self-assembly with other proteins. Our results suggest that including the effect of the cellular environment in experimental setups and predictive softwares, for both mechanistic studies and drug design, is essential in order to obtain a more complete combination of the driving forces of amyloid aggregation.


Assuntos
Amiloide , Agregados Proteicos , Humanos , Sequência de Aminoácidos , Amiloide/química , Amiloide/genética , Leucina/química , Leucina/genética , Dobramento de Proteína , Agregados Proteicos/genética , /genética , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Pressão Osmótica , Ureia/química
11.
Eur J Pharm Biopharm ; 189: 264-275, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392870

RESUMO

Low oral absorption and extensive first pass metabolism of progesterone is reported for many oral formulations which warrants investigation into other routes of administration. It is the aim of this study to investigate the generation of inhaled formulations of progesterone though a spray drying approach with a focus on how spray drying impacts the physicochemical properties of progesterone. Formulations of progesterone with L-leucine and hydroxypropyl methylcellulose acetate succinate (HPMCAS) are reported to this aim. X-ray diffraction, spectroscopy and thermal analysis were used to characterise these formulations and confirmed that progesterone crystallises as the Form II polymorph during spray drying regardless of the solvent used. The resultant formulations showed higher aqueous solubility than progesterone Form I starting material and the addition of HPMCAS was shown to temporarily enable a supersaturated state. Thermal analysis was used to show that the Form II polymorph was sensitive to transformation to Form I during heating. The addition of L-leucine to the formulations reduced the temperature for the polymorphic transformation by âˆ¼ 10 °C. However, when HPMCAS was added to the formulation, the Form II polymorph was prevented from transforming to the Form I polymorph. Cascade impaction was used to determine the aerosol performance of the spray dried powders and showed promising lung deposition profiles (mass median aerodynamic diameter 5 µm) with significant variation depending on the organic solvent used and the ratio of organic to aqueous phase in the feedstock. However, further optimisation of formulations was required to direct more progesterone into the alveolar regions. The addition of HPMCAS was seen to increase the alveolar deposition and therefore formed a formulation with a lower fine particle fraction and mass median aerodynamic diameter. The most suitable formulation for inhalation was formed from a 50:50 acetone:water mixture and showed an ED, FPF and FPD of 81.7%, 44.5% and 7.3 mg respectively. Therefore, HPMCAS is suggested as a suitable excipient to increase solubility, prevent polymorphic transformation and improve inhalation properties of spray dried progesterone formulations. This study highlights the use of spray drying to form inhalable progesterone powders with higher solubility which may broaden the application of this medicine.


Assuntos
Excipientes , Progesterona , Pós/química , Leucina/química , Excipientes/química , Administração por Inalação , Aerossóis/química , Solventes , Tamanho da Partícula , Inaladores de Pó Seco/métodos
12.
Bioprocess Biosyst Eng ; 46(9): 1365-1373, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37452834

RESUMO

Chiral compounds are important drug intermediates that play a critical role in human life. Herein, we report a facile method to prepare multi-enzyme nano-devices with high catalytic activity and stability. The self-assemble molecular binders SpyCatcher and SpyTag were fused with leucine dehydrogenase and glucose dehydrogenase to produce sc-LeuDH (SpyCatcher-fused leucine dehydrogenase) and GDH-st (SpyTag-fused glucose dehydrogenase), respectively. After assembling, the cross-linked enzymes LeuDH-GDH were formed. The crosslinking enzyme has good pH stability and temperature stability. The coenzyme cycle constant of LeuDH-GDH was always higher than that of free double enzymes. The yield of L-tert-leucine synthesis by LeuDH-GDH was 0.47 times higher than that by free LeuDH and GDH. To further improve the enzyme performance, the cross-linked LeuDH-GDH was immobilized on zeolite imidazolate framework-8 (ZIF-8) via bionic mineralization, forming LeuDH-GDH @ZIF-8. The created co-immobilized enzymes showed even better pH stability and temperature stability than the cross-linked enzymes, and LeuDH-GDH@ZIF-8 retains 70% relative conversion rate in the first four reuses. In addition, the yield of LeuDH-GDH@ZIF-8 was 0.62 times higher than that of LeuDH-GDH, and 1.38 times higher than that of free double enzyme system. This work provides a novel method for developing multi-enzyme nano-device, and the ease of operation of this method is appealing for the construction of other multi-enzymes @MOF systems for the applications in the kinds of complex environment.


Assuntos
Estruturas Metalorgânicas , Humanos , Leucina Desidrogenase/química , Leucina/química , Glucose Desidrogenase
13.
Anal Chem ; 95(26): 9746-9753, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37307028

RESUMO

High-throughput quantitative analysis of protein conformational changes has a profound impact on our understanding of the pathological mechanisms of Alzheimer's disease (AD). To establish an effective workflow enabling quantitative analysis of changes in protein conformation within multiple samples simultaneously, here we report the combination of N,N-dimethyl leucine (DiLeu) isobaric tag labeling with limited proteolysis mass spectrometry (DiLeu-LiP-MS) for high-throughput structural protein quantitation in serum samples collected from AD patients and control donors. Twenty-three proteins were discovered to undergo structural changes, mapping to 35 unique conformotypic peptides with significant changes between the AD group and the control group. Seven out of 23 proteins, including CO3, CO9, C4BPA, APOA1, APOA4, C1R, and APOA, exhibited a potential correlation with AD. Moreover, we found that complement proteins (e.g., CO3, CO9, and C4BPA) related to AD exhibited elevated levels in the AD group compared to those in the control group. These results provide evidence that the established DiLeu-LiP-MS method can be used for high-throughput structural protein quantitation, which also showed great potential in achieving large-scale and in-depth quantitative analysis of protein conformational changes in other biological systems.


Assuntos
Doença de Alzheimer , Humanos , Leucina/química , Proteólise , Proteômica/métodos , Espectrometria de Massas , Apolipoproteína A-I
14.
Int J Pharm ; 642: 123117, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37315636

RESUMO

The past decades have witnessed tremendous expansion in utilization of plant-derived medicines as resveratrol (RES) in treating several diseases like idiopathic pulmonary fibrosis (IPF). RES can exhibit its role in treating IPF via its outstanding antioxidant and anti-inflammatory activities. The goal of this work was to formulate RES-loaded spray-dried composite microparticles (SDCMs) suitable for pulmonary delivery via dry powder inhaler (DPI). They were prepared by spray drying of a previously prepared RES-loaded bovine serum albumin nanoparticles (BSA NPs) dispersion using different carriers. RES-loaded BSA NPs, prepared by the desolvation technique, acquired suitable particle size of 177.67 ± 0.95 nm and entrapment efficiency of 98.7 ± 0.35% with perfectly uniform size distribution and high stability. Considering the attributes of the pulmonary route, NPs were co-spray dried with compatible carriers viz. mannitol, dextran, trehalose, leucine, glycine, aspartic acid, and glutamic acid to fabricate SDCMs. All formulations showed suitable mass median aerodynamic diameter<5 µm; that is suitable for deep lung deposition. However, the best aerosolization behavior was attained from using leucine with fine particle fraction (FPF) of 75.74%, followed by glycine with FPF of 54.7%. Finally, a pharmacodynamic study was conducted on bleomycin-induced mice, and it strongly revealed the role of the optimized formulations in alleviating PF through suppressing the levels of hydroxyproline, tumor necrosis factor-α and matrix metalloproteinase-9 with obvious improvements in the treated lung histopathology. These findings indicate that in addition to leucine, the glycine amino acid, which is not commonly used yet, is very promising in the formulation of DPIs.


Assuntos
Portadores de Fármacos , Fibrose Pulmonar Idiopática , Camundongos , Animais , Portadores de Fármacos/química , Resveratrol , Leucina/química , Administração por Inalação , Soroalbumina Bovina , Fibrose Pulmonar Idiopática/tratamento farmacológico , Tamanho da Partícula , Inaladores de Pó Seco , Pós/química , Aerossóis e Gotículas Respiratórios
15.
Protein Pept Lett ; 30(7): 574-586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37211850

RESUMO

BACKGROUND: Leucine-rich repeats (LRRs) occurring in tandem are 20-29 amino acids long. Eleven LRR types have been recognized; they include plant-specific (PS) type with the consensus of LxxLxLxxNxL SGxIPxxIxxLxx of 24 residues and SDS22-like type with the consensus of LxxLxLxxNxL xxIxxIxxLxx of 22 residues. OBJECTIVE: A viral LRR protein in metagenome data indicated that most of the LRRs (5/6 = 0.83) are represented by the consensus of LxxLDLxxTxV SGKLSDLxxLTN of 23 residues. This LRR shows a dual characteristic of PS and SDS22-like LRRs (called PS/SDS22-like LRR). A comprehensive similarity search was performed under the hypothesis that many proteins contain LRR domains consisting of only or mainly PS/SDS22-like LRR. METHODS: Sequence similarity search by the FASTA and BLAST programs was performed using the sequence of this PS/SDS22-like LRR domain as a query sequence. The presence of PS/SDS22-like LRR was screened within the LRR domains in known structures. RESULTS: Over 280 LRR proteins were identified from protists, fungi, and bacteria; ~ 40% come from the SAR group (the phyla Alveolate and Stramenopiles). The secondary structure analysis of PS/SDS22-like LRRs occurring sporadically in the known structures indicates three or four type patterns of secondary structures. CONCLUSION: PS/SDS22-like LRR forms an LRR class with PS, SDS22-like and Leptospira-like LRRs. It appears that PS/SDS22-like LRR is a chameleon-like sequence. A duality of two LRR types brings diversity.


Assuntos
Eucariotos , Proteínas , Leucina/química , Sequência de Aminoácidos , Proteínas/genética , Proteínas/química , Domínios Proteicos
16.
Int J Pharm ; 635: 122679, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36738804

RESUMO

Endolysins are bacteriophage-encoded enzymatic proteins that have great potential to treat multidrug-resistant bacterial infections. Bacteriophage endolysins Cpl-1 and ClyJ-3 have shown promising antimicrobial activity against Streptococcus pneumoniae, which causes pneumonia in humans. This is the first study to investigate the feasibility of spray-dried endolysins Cpl-1 and ClyJ-3 with excipients to produce inhalable powders. The two endolysins were individually tested with leucine and sugar (lactose or trehalose) for spray drying method followed by characterization of biological and physico-chemical properties. A complete loss of ClyJ-3 bioactivity was observed after atomization of the liquid feed solution(before the drying process), while Cpl-1 maintained its bioactivity in the spray-dried powders. Cpl-1 formulations containing leucine with lactose or trehalose showed promising physico-chemical properties (particle size, crystallinity, hygroscopicity, etc.) and aerosol performances (fine particle fraction values above 65%). The results indicated that endolysin Cpl-1 can be formulated as spray dried powders suitable for inhaled delivery to the lungs for the potential treatment of pulmonary infections.


Assuntos
Bacteriófagos , Pneumonia , Humanos , Pós/química , Química Farmacêutica/métodos , Lactose/química , Bacteriófagos/química , Leucina/química , Trealose/química , Aerossóis e Gotículas Respiratórios , Tamanho da Partícula , Administração por Inalação
17.
J Biol Chem ; 299(2): 102789, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509144

RESUMO

α-Isopropylmalate synthase (IPMS) catalyzes the first step in leucine (Leu) biosynthesis and is allosterically regulated by the pathway end product, Leu. IPMS is a dimeric enzyme with each chain consisting of catalytic, accessory, and regulatory domains, with the accessory and regulatory domains of each chain sitting adjacent to the catalytic domain of the other chain. The IPMS crystal structure shows significant asymmetry because of different relative domain conformations in each chain. Owing to the challenges posed by the dynamic and asymmetric structures of IPMS enzymes, the molecular details of their catalytic and allosteric mechanisms are not fully understood. In this study, we have investigated the allosteric feedback mechanism of the IPMS enzyme from the bacterium that causes meningitis, Neisseria meningitidis (NmeIPMS). By combining molecular dynamics simulations with small-angle X-ray scattering, mutagenesis, and heterodimer generation, we demonstrate that Leu-bound NmeIPMS is in a rigid conformational state stabilized by asymmetric interdomain polar interactions. Furthermore, we found removing these polar interactions by mutagenesis impaired the allosteric response without compromising Leu binding. Our results suggest that the allosteric inhibition of NmeIPMS is achieved by restricting the flexibility of the accessory and regulatory domains, demonstrating that significant conformational flexibility is required for catalysis.


Assuntos
2-Isopropilmalato Sintase , Biocatálise , Leucina , Neisseria meningitidis , Domínios Proteicos , 2-Isopropilmalato Sintase/química , 2-Isopropilmalato Sintase/genética , 2-Isopropilmalato Sintase/metabolismo , Regulação Alostérica , Domínio Catalítico , Leucina/biossíntese , Leucina/química , Leucina/metabolismo , Neisseria meningitidis/enzimologia , Neisseria meningitidis/metabolismo , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X , Multimerização Proteica , Mutagênese , Maleabilidade
18.
ChemMedChem ; 18(3): e202200336, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36325810

RESUMO

The Zika virus (ZIKV) remains a potential threat to the public health due to the lack of both an approved vaccination or a specific treatment. In this work, a series of peptidic inhibitors of the ZIKV protease with boroleucine as P1 residue was synthesized. The highest affinities with Ki values down to 8 nM were observed for compounds with basic residues in both P2 and P3 position and at the N-terminus. The low potency of reference compounds containing leucine, leucine-amide or isopentylamide as P1 residue suggested a covalent binding mode of the boroleucine-derived inhibitors. This was finally proven by crystal structure determination of the most potent inhibitor from this series in complex with the ZIKV protease.


Assuntos
Antivirais , Inibidores de Proteases , Infecção por Zika virus , Zika virus , Humanos , Antivirais/farmacologia , Antivirais/química , Leucina/química , Leucina/farmacologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Zika virus/efeitos dos fármacos , Zika virus/metabolismo , Infecção por Zika virus/metabolismo
19.
Int J Pharm ; 631: 122550, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36577481

RESUMO

N-acetylcysteine (NAC) has both antioxidant and immunomodulatory activities and has been used as adjuvant therapy in several viral infections. Recently, NAC attracted attention for its possible role in reducing the affinity of the spike protein receptor binding domain to angiotensin-converting enzyme (ACE2) receptors. Since only NAC solutions are available for inhalation, the purpose of the work was to develop a NAC dry powder for inhalation using mannitol or leucine as excipient. The powder was successfully produced using co-spray-drying with leucine. ATR-FTIR analyses evidenced spectral variations ascribed to the formation of specific interactions between NAC and leucine. This effect on the NAC environment was not evident for NAC-mannitol powders, but mannitol was in a different polymorphic form compared to the supplied material. Both the feedstock concentration and the leucine content have an impact on the powder aerodynamic features. In particular, to maximize the respirable fraction, it is preferable to produce the powder starting from a 0.5 % w/v feedstock solution using 33 to 50 % w/w leucine content. The NAC-leucine powder was stable for ten months maintaining NAC content of 50 % (w/w) and about 200 µg of NAC was able to deposit on a transwell insert, useful for future in vitro studies.


Assuntos
Acetilcisteína , Manitol , Pós/química , Leucina/química , Administração por Inalação , Aerossóis/química , Manitol/química , Tamanho da Partícula , Inaladores de Pó Seco
20.
J Mol Biol ; 435(4): 167925, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36535427

RESUMO

To dissect the N-terminal residues within the cellular prion protein (PrPC) that are critical for efficient prion propagation, we generated a library of point, double, or triple alanine replacements within residues 23-111 of PrP, stably expressed them in cells silenced for endogenous mouse PrPC and challenged the reconstituted cells with four common but biologically diverse mouse prion strains. Amino acids (aa) 105-111 of Charge Cluster 2 (CC2), which is disordered in PrPC, were found to be required for propagation of all four prion strains; other residues had no effect or exhibited strain-specific effects. Replacements in CC2, including aa105-111, dominantly inhibited prion propagation in the presence of endogenous wild type PrPC whilst other changes were not inhibitory. Single alanine replacements within aa105-111 identified leucine 108 and valine 111 or the cluster of lysine 105, threonine 106 and asparagine 107 as critical for prion propagation. These residues mediate specific ordering of unstructured CC2 into ß-sheets in the infectious prion fibrils from Rocky Mountain Laboratory (RML) and ME7 mouse prion strains.


Assuntos
Alanina , Proteínas Priônicas , Animais , Camundongos , Alanina/química , Alanina/genética , Leucina/química , Leucina/genética , Proteínas Priônicas/química , Proteínas Priônicas/genética , Substituição de Aminoácidos , Domínios Proteicos , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...